skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shafique, Zoya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nonverbal communication, such as body language, facial expressions, and hand gestures, is crucial to human communication as it conveys more information about emotions and attitudes than spoken words. However, individuals who are blind or have low-vision (BLV) may not have access to this method of communication, leading to asymmetry in conversations. Developing systems to recognize nonverbal communication cues (NVCs) for the BLV community would enhance communication and understanding for both parties. This paper focuses on developing a multimodal computer vision system to recognize and detect NVCs. To accomplish our objective, we are collecting a dataset focused on nonverbal communication cues. Here, we propose a baseline model for recognizing NVCs and present initial results on the Aff-Wild2 dataset. Our baseline model achieved an accuracy of 68% and a F1-Score of 64% on the Aff-Wild2 validation set, making it comparable with previous state of the art results. Furthermore, we discuss the various challenges associated with NVC recognition as well as the limitations of our current work. 
    more » « less